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Abstract—Due to the fast-growing usage of wireless devices,
cognitive radio networks have been proposed to address the
spectrum scarcity problem. As the foundation of their practi-
cal applications, designing robust and secure spectrum sensing
mechanisms is of great significance. In most existing works,
the common control channel (CCC) is assumed to be perfect.
However, this assumption may not hold in practice and im-
perfect CCC makes the existing methods against independent
or cooperative data falsification attacks less effective. In this
paper, we first analyze the impact of an imperfect CCC on the
identification of malicious secondary users under independent
and cooperative attacks. To better differentiate honest users
and malicious users, a reputation threshold is derived for each
secondary user. Based on the obtained reputation threshold, we
propose a new reputation-based cooperative spectrum sensing
method, which is validated to be robust against attacks under
imperfect CCC. Extensive numerical simulations demonstrate the
effectiveness of the proposed method.

Index Terms—Cognitive radio networks, cooperative spectrum
sensing, reputation value threshold computation.

I. INTRODUCTION

W ITH the wide employment of wireless devices in vari-
ous communication systems and networks, the current

static frequency allocation schemes cannot, cope with the dra-
matically increasing data transmission demand [1]. However, a
survey from the Federal Communications Commission states
many spectra authorized to users are not efficiently utilized
[2]. Under such a circumstance, the emerging concept of
cognitive radio networks (CRNs) has been inspired, which is
considered as a promising way to improve the utilization of
scarce radio spectrum [3]. Moreover, the first cognitive radio
based network standard has been proposed in IEEE 802.22. It
defines a centralized, single hop, and one-point to multi-point
communication standard for wireless regional area networks
[4], in which there are three main entities: primary users (PUs),
secondary users (SUs) and a fusion center (FC). The PUs have
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authorized spectra which are always available to them. The
SUs are devices that are capable of sensing the surrounding
spectra and sending the local sensing results to the FC. The FC
makes a final spectrum sensing decision and broadcasts it to
all SUs. After that, the SUs would perform data transmission
according to the decision of the FC. A dedicated channel,
named common control channel (CCC), is utilized to exchange
control messages between the FC and the SUs. The kind of
control messages can be cooperative spectrum sensing (CSS)
data, spectrum-aware routing information and spectrum access
coordination information. Thus, a reliable and “always on"
CCC is indispensable [5]. Since the CCC is utilized by all
SUs and its capacity is limited, the control messages should
be carefully simplified. Otherwise, the CCC may become the
bottleneck of the whole network.

In CRNs, it is essential that the SUs do not cause interfer-
ence to the PUs. To ensure this, the SUs periodically sense
the spectra to detect the presence of the PUs and vacate the
spectra in time when the PUs come back. Therefore, spectrum
sensing plays a key role in CRNs. However, some SUs may
be malicious and can transmit false local sensing results to
the FC or other SUs. As a result, the transmission of PUs
can be interfered and the idle spectra can be only occupied
by malicious SUs [6]. The presence of these malicious SUs
(MSUs) can degrade the effectiveness of CSS dramatically.
This kind of attack launched by MSUs is usually referred as
spectrum sensing data falsification attack [7]. When the MSUs
launches attacks independently, it is referred as independent
attacks and otherwise, it is referred as cooperative attacks
when MSUs act cooperatively [4], [8]. In order to prevent
these two kinds of attacks from MSUs, it is essential to detect
MSUs so that the FC only uses information from the honest
SUs (HSUs) to make a correct spectrum sensing decision.

Existing works to defend against MSUs in CSS phase
usually assume that the CCC is perfect (i.e., error-free) [4], [8]-
[11]. However, this assumption cannot be satisfied in practice.
Based on modeling the probability of reporting one-bit error
via CCC introduced by [13], we find that the effectiveness of
the above methods to detect MSUs and guarantee the correct-
ness of the FC’s spectrum sensing decisions can be degraded
dramatically in this case. Thus, the impact of imperfect CCC
on identifying of MSUs from HSUs should be analyzed at first
under both independent and cooperative attacks.

Since different SUs have different probabilities of reporting
one-bit error via CCC due to their different locations, it is
improper to use just one unified reputation value threshold
to filter out MSUs as in [4] and [8]. It also requires that
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the probability that an HSU is misjudged as a malicious
one should be limited to a low level when designing such
a reputation value threshold. Hence, it is necessary to set a
personalized threshold for each SU to decide whether it is
filtered out as an MSU.

After filtering out the SUs whose reputation value is lower
than their own personalized thresholds, the FC should decide
which remaining SUs should participate in CSS in the future
and what fusion rules should be utilized to draw final spectrum
sensing decisions.

Therefore in this paper, we develop a robust reputation-
based cooperative spectrum sensing (R2-CSS) method, which
can tackle both independent and cooperative attacks under
an imperfect CCC. The development of the R2-CSS method
involves three stages, which also form the three major contri-
butions of the paper:
• Firstly, we analyze the impact of an imperfect CCC on

the detection of MSUs under independent and cooperative
attacks. It is shown that an imperfect CCC could make
more HSUs be incorrectly recognized as MSUs, which
would cause the FC to make incorrect final spectrum
sensing decisions.

• Secondly, to better differentiate HSUs and MSUs in the
scenario of imperfect CCC, we derive a novel reputation
threshold for each SU, which can be used to judge
whether an SU is malicious or not.

• At last, the R2-CSS method is proposed, built upon the
reputation threshold of each SU. Here, a number of HSUs
are randomly chosen to perform CSS by a weighted ma-
jority rule. Theoretical analysis and extensive simulations
justify the effectiveness of the proposed method.

The rest of the paper is organized as follows. Related work
is summarized in Section II. The impact of imperfect CCC
on the detection of MSUs is analyzed in Section III. The new
reputation threshold for MSU detection is derived in Section
IV. In Sections V, we present the R2-CSS method and its
performance defending against MSUs is analyzed in Section
VI. Simulation results are provided in Section VII to show
the superior performance of the proposed method and Section
VIII concludes the paper.

II. RELATED WORK

So far, a number of spectrum sensing methods have been
reported in the literature, which can be classified into two
categories: non-cooperative spectrum sensing (n-CSS) and
CSS.

In n-CSS, each SU makes its decision without exchanging
information with the others. On the basis that each SU has
an embedded energy detector, the signals of PUs can be
detected by comparing the output of the energy detector with
a threshold which depends on the noise floor [14], [15]. When
the waveform patterns of the PU signals are known, the SUs
can compare the waveform patterns of the received signals
with the known ones to find the presence and absence of PUs
[16]. For example, the PUs can be detected by exploiting
the cyclostationary features of PU signals [17]. The PUs
can also be detected by radio identification based sensing

[18] and matched-filter based sensing [19]. However, the
effectiveness of the n-CSS methods degrades significantly in
the situation of wireless channel uncertainty caused by noise,
small-scale fading and shadowing, which is unavoidable in
practical applications.

In contrast, the CSS methods are less sensitive to wireless
channel uncertainty. A cluster-based CSS method is proposed
in [20] to obtain a proper assignment policy in which all SUs
in the same cluster cooperate in sensing the same set of PU
spectra. In [21], the SUs to perform CSS would be selected
with different rates aiming to satisfy the global detection and
false alarm requirements. In [22], it is assumed that the energy
detector of each SU has a different signal-to-noise ratio (SNR)
and the SUs are chosen for CSS according to a derived optimal
detection threshold. Taking practical spectrum conditions and
link failures into consideration, a weighted soft measurement
combining with an FC for CSS is developed in [23]. Dai et al
put forward a sensor selection method for CSS in [24], with the
purpose of minimizing the interference to PUs caused by the
transmission behaviors of SUs. In [25], two scenarios, with
and without sensor node location information respectively,
are considered and the corresponding SU selection methods
are derived satisfying the average global detection probability
constraints.

Although the above CSS schemes can provide multiplexing
gains and improve accuracy, they are vulnerable to attacks.
A number of CSS methods that can tackle attacks have been
reported in [4], [8]-[11], and [26]-[27]. In [10], Wang et al
propose to thwart malicious behaviors by designing a protocol
which makes the payoff of launching attacks smaller than
zero. Whilst this may reduce the number of MSUs launching
attacks, it cannot stop all MSUs from attacking. In [26], a fast
searching algorithm is proposed to find a cluster of HSUs
to perform CSS but many HSUs are not included in this
cluster, which lowers the effectiveness of CSS. An iterative
expectation maximization algorithm is proposed in [27] to
detect MSUs but it requires some strong conditions, as to be
shown later.

Differently, the reputation of SUs is exploited to design
CSS methods in [4], [8], [9] and [11]. In a reputation based
method, the reputation value of each SU is computed based
on the similarity between its own sensing history and the final
decisions made by the FC. In [9], the trust of an SU and
its capability to sense the spectra are taken into account when
computing the reputation value. In [11], Mousavifar and Leung
design a reputation-based spectrum sensing protocol with less
SU sensing reports and the accuracy of reputation values is
proved. Yet, it cannot judge whether an SU is malicious or not.
It should be noted that the reputation-based methods in [9] and
[11], as well as the methods in [10], [26] and [27], assume that
an MSU individually sends out the sensing result opposite to
its own local sensing counterpart by a probability (referred as
independent attack) and the FC always makes correct spectrum
sensing decisions. However, they do not consider the case of
cooperative attack [4], [8].

In order to detect the MSUs under both independent and
cooperative attacks, a reputation factor is defined in [8] and
a threshold to detect whether an SU is malicious is derived
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under the assumption that the fraction of MSUs over all SUs
is known to the FC. However, this fraction is seldom known in
practice, which causes many HSUs being labeled as MSUs in
[8]. On the contrary, the MSU selection method in [4] does not
require any prior information about MSUs. In this method, the
reputation value is determined by the structure of the clusters
and an SU is deemed as a malicious one when its reputation
value is under a threshold. Unfortunately, how to find such a
threshold is not given in [4] because too much uncertainty is
introduced by the structure of clusters. Instead, the reputation
value threshold is fixed at 0.5. As a result, a portion of MSUs
would not be detected. Furthermore, many CSS methods,
including those above except [11], assume that the CCC is
perfect. This assumption, however, hardly holds in practical
applications, thanks to the presence of interference and noise.
Although the CSS protocol in [11] considers imperfect channel
but it cannot, as previously mentioned, be used to detect
MSUs.

Note that there may exist some other attacks, like jamming
attacks [28], primary user emulation attacks [29], location
inference attacks [30], etc. Since these attacks are not unique
in the cooperative spectrum phase and can be mitigated by
spread-spectrum techniques [31] or existing countermeasures
in wireless sensor networks [32], it is beyond the scope of this
paper to deal with such attacks.

III. IMPERFECT CCC AND ITS IMPACT

In this section, we first introduce the CRN model consid-
ered, which has been widely used in other works. Given this
CRN model, we then analyze how an imperfect CCC affects
the detection of the MSUs, which consequently has an impact
on the final spectrum sensing decision made by the FC.

A. CRN model

According to [4], [8]-[12], and [26]-[27], the system model
we consider is as shown in Fig. 1. There are N SUs and
one PU coexisting in the same area. An FC is in charge of
spectrum management for all SUs. Among these SUs, there are
M MSUs and the FC has no idea which SUs are malicious.
Let N and M denote the collection of all the SUs and all
the MSUs respectively. The distances between the FC and the
SUs are assumed to be much shorter than the distance between
the FC and the PU. The FC and the SUs are synchronized
and a time slotting structure is utilized where each time slot
is divided into two parts: spectrum sensing phase and data
transmission phase.

To perform CSS, each SU first conducts individual spectrum
sensing to decide on the spectrum state and then reports
a one-bit decision to the FC via CCC. As for individual
spectrum sensing, the energy detector based sensing is uti-
lized here, thanks to its low computation and implementation
complexities and its nonnecessity of any knowledge on the
PU signal [1]. Let ldi denote the local decision of the ith
SU, labelled as SUi. If SUi detects the existence of the PU
signal, we set ldi = 1; otherwise, ldi = 0. The detection
probability Pd and the false alarm probability Pf are utilized
to evaluate the accuracy of individual spectrum sensing. Here,

Primary User Fusion Center
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MSU

MSU

SU

SU

SU

SU
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Fig. 1. The considered CRN model.

Pd = P (ldi = 1|H1) and Pf = P (ldi = 1|H0) with H0 and
H1 being two hypotheses defined as{

H0 the spectrum is idle
H1 the spectrum is occupied by the PU.

In this scenario, all SUs have the same Pd, as well as the
same Pf [4]. Specifically, Pd and Pf can be computed by the
FC as follows [13], [14]:

Pd = e−
λ
2

w−2∑
n=0

1

n!

(
λ

2

)n
+

(
1 + γ̄

γ̄

)w−1
×
[
e−

λ
2(1+γ̄) − e−λ2

w−2∑
n=0

1

n!

(
λγ̄

2(1 + γ̄)

)n] (1)

and

Pf =
Γ
(
w, λ2

)
Γ(w)

(2)

where w is the time bandwidth product, λ is the energy
detection threshold, Γ(.) is the gamma function, Γ(., .) is the
incomplete gamma function, and γ̄ is the average SNR of the
received signal from the PU to the SUs. Here, γ̄ is given by

γ̄ = ρPUhPU/σ
2 (3)

where ρPU is the transmit power of the PU, σ2 is the Gaussian
noise variance, and

hPU = κ/dµP (4)

is the path loss between the PU and the SUs with κ, µ and
dP being the path loss constant, the path loss exponent and
the distance between the PU and the SUs, respectively.

After the FC receives the reports from all SUs, it will work
out a final spectrum sensing decision and broadcast it to all
SUs. Depending on the CSS methods used, the rules for the FC
to get the final spectrum sensing decision would be different.

B. Impact of imperfect CCC on MSU detection

In most existing works about CSS, the CCC is assumed
to be perfect. In this case, for any HSU, the probability of
reporting a correct sensing result is [4], [8]:

pH = PBPd + PI(1− Pf ) (5)
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where Pd and Pf are given in (1) and (2) respectively, PB is
the probability that the PU is transmitting on the authorized
spectrum, and PI = 1 − PB . As indicated in Section III-A,
all SUs have the same Pd and Pf , and thus all SUs have the
same pH .

However, as previously mentioned, the CCC cannot be
perfect in practice. Consequently, errors could occur when SUs
transmit messages to the FC. Moreover, as shown in [5], the
CCC is usually capacity limited and thus it is impossible to
use check codes to guarantee the successful transmission of
local spectrum sensing results, especially when the number
of SUs is large. Next, we discuss how this affects the FC to
identify the MSUs and subsequently make the final spectrum
sensing decision.

According to [13], given BPSK modulation in Rayleigh
fading environment, the probability of reporting one-bit error
between SUi and the FC via an imperfect CCC is given by

Pe,i =
1

2

(
1−

√
γ̄i

1 + γ̄i

)
(6)

with
γ̄i = ρihi/σ

2 (7)

being the average SNR for the bit reporting between SUi and
the FC. Here, ρi is the transmit power of SUi;

hi = κ/dµi (8)

and di are the path loss and the distance between SUi and
the FC, respectively. Based on pH and Pe,i, the probability
for any HSU SUi to report a correct sensing result under an
imperfect CCC is

PH,i = pH(1− Pe,i) + (1− pH)Pe,i

= F(pH , Pe,i)
(9)

where F is a function defined as F(x, y) = x(1−y)+(1−x)y.
As stated in [4], the ability of the FC to distinguish MSUs

from HSUs is determined by the probability of reporting
different local sensing results for an HSU and an MSU.
The larger such probability is, the more easily the FC can
separate MSUs from HSUs. Let pi,jAH be this probability for
an HSU SUi and an MSU SUj under a perfect CCC, and
P i,jAH be the counterpart of pi,jAH under an imperfect CCC.
Then, P i,jAH − pi,jAH can be used to analyze the influence of an
imperfect CCC on the ability of the FC to identify MSUs. In
order to calculate P i,jAH − pi,jAH , let us further denote pM,j and
PM,j as the probabilities that the MSU SUj reports a correct
sensing result under perfect and imperfect CCCs, respectively.
Similar to (9), it holds that

PM,j = F(pM,j , Pe,j). (10)

Then, based on pH , PH,i, pM,j and PM,j , one can compute
pi,jAH and P i,jAH as follows:

pi,jAH = pH(1− pM,j) + (1− pH)pM,j (11)

and

P i,jAH = PH,i(1− PM,j) + (1− PH,i)PM,j . (12)

Considering (9)-(11), we can further write (12) as

P i,jAH = F(pH , Pe,i) · (1−F(pM,j , Pe,j))

+ (1−F(pH , Pe,i)) · F(pM,j , Pe,j)

= (1− 2(Pe,i + Pe,j) + 4Pe,iPe,j) · (pH(1− pM,j)

+ (1− pH)pM,j) + Pe,i + Pe,j − 2Pe,iPe,j

= (1− 2(Pe,i + Pe,j) + 4Pe,iPe,j) pAH

+ Pe,i + Pe,j − 2Pe,iPe,j .
(13)

From (11) and (13), it results in

P i,jAH − pi,jAH = (1− 2pi,jAH)(Pe,i + Pe,j − 2Pe,iPe,j). (14)

In the context of CSS, there are two kinds of attacks:
independent attack and cooperative attack [4], [8]. In the
following two subsections, we will discuss how an imperfect
CCC affects the ability of the FC to detect MSUs under these
attacks. Note that in the presence of independent attack (resp.
cooperative attack), pM,j in (10) and (11) will be denoted as
pMI,j (resp. pMC,j).

1) Impact under independent attack: In the case of inde-
pendent attack, an MSU would report the sensing decision
opposite to its own local sensing result with the probability
of Pmal. For any MSU SUj , the probability that it offers a
correct sensing result via a perfect CCC is [4]:

pMI,j = F(pH , Pmal). (15)

Replacing pM,j in (11) with the above pMI,j , one can get

pi,jAH = pH(1− pMI,j) + (1− pH)pMI,j

= pH · (1−F(pH , Pmal)) + (1− pH) · F(pH , Pmal)

= 2pH(1− pH)(1− 2Pmal) + Pmal.
(16)

Considering the most harmful situation, i.e., Pmal = 1, it
follows from (16) that pi,jAH = −2pH(1− pH) + 1. As stated
in [4], pH is close to 1. Thus one can verify that pi,jAH is
also close to 1, which leads to 1 − 2pi,jAH < 0. Moreover,
Pe,i+Pe,j−2Pe,iPe,j ≥ 0 holds all the time. Hence, one can
conclude from (14) that P i,jAH −pi,jAH ≤ 0. This means that the
difference of spectrum sensing histories between an HSU and
an MSU under an imperfect CCC is smaller than that under
a perfect CCC. Therefore, more MSUs may be considered
as HSUs and thus escape from being detected. This would
misguide the FC to make an incorrect final spectrum sensing
decision.

2) Impact under cooperative attack: In the presence of co-
operative attack, the MSUs exchange their sensing information
to decide their response collaboratively and the collaboration
strategy can be ‘L out of M ’ [4], [8]. This strategy means
that when L of the total M MSUs find that the spectrum is
idle, all MSUs would report to the FC that the spectrum is
occupied by the PU. Reversely, if the spectrum is found being
occupied by the PU, the MSUs would report to the FC that
the spectrum is available.
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According to [4] and [8], if all of the MSUs perform
cooperative attack, the probability that any MSU SUj ∈ M
reports a correct sensing result through a perfect CCC is

pMC,j = F
(

M∑
l=L

(
M

l

)
plH(1− pH)M−l, Pmal

)
(17)

where

L = min(M, dM/(1 + ν)e) with ν =

(
ln
Pf
Pd

)(
1− Pd
1− Pf

)
.

(18)
Using the above pMC,j to replace pM,j in (11), one can get

pi,jAH = pH(1− pMC,j) + (1− pH)pMC,j

= pH ·
(

1−F
(

M∑
l=L

(
M

l

)
plH(1− pH)M−l, Pmal

))

+ (1− pH) · F
(

M∑
l=L

(
M

l

)
plH(1− pH)M−l, Pmal

)

= (pH − 2pH

M∑
l=L

(
M

l

)
plH(1− pH)M−l

+
M∑
l=L

(
M

l

)
plH(1− pH)M−l) · (1− 2Pmal) + Pmal.

(19)

Similar to the analysis under independent attack, in the most
harmful case (i.e., Pmal = 1), pH is close to 1. Thus, one can
derive from (19) that pi,jAH is also close to 1, giving 1−2pi,jAH <
0. Also, since Pe,i+Pe,j−2Pe,iPe,j ≥ 0, it can be concluded
from (14) that P i,jAH −pi,jAH ≤ 0. Due to this, more MSUs will
be mistakenly identified as HSUs, which would cause the FC
to make a wrong final spectrum sensing decision.

IV. SELECTION OF REPUTATION THRESHOLD

In the reputation-based methods for MSU detection, a repu-
tation threshold is usually used for each SU. If the reputation
value of an SU is not greater than the considered threshold,
this SU is classified as an MSU; otherwise, it is categorized
as an HSU. Obviously, the selection of a suitable reputation
value threshold is crucial. In [8], a reputation value threshold
is derived under the condition that the fraction of MSUs over
all SUs is known. However, this condition is too restrictive
to meet in practice. In [4], the reputation value threshold
is set to 0.5. Since the reputation values obtained in [4]
cannot be confined between 0 and 1, they can accumulate
over time. Hence, setting the reputation threshold to 0.5 is
not appropriate. Furthermore, when selecting the reputation
threshold, the approaches in [4] and [8] only consider the
case that the CCC is perfect. Next, we will derive a proper
reputation threshold for each SU to facilitate the detection of
MSUs under imperfect CCC and in the presence of attacks.

To proceed, let us consider the widely-used reputation value
defined below.

Definition 1: [11], [33], [34]: The reputation value of SUi,
denoted by ri, is the probability of reporting an accurate
sensing result. It can be estimated by

ri = τi/Tw (20)

where Tw is the recording time window and τi denotes the
number of reports from SUi which are identical to the final
decisions of the FC during Tw.
It can be seen from Proposition 1, the calculation of ri
utilizes the local spectrum sensing decision history of SUi.
Further, let ηi be the reputation value threshold for SUi and
pi denote the probability that SUi reports a local sensing
result identical to the final spectrum sensing decision. If SUi
is honest, pi = PH,i where PH,i is given in (9). If SUi is
malicious, pi = PM,i where PM,i is given in (10). As we
previously mentioned, pM,i is denoted as pMI,i in the presence
of independent attack, which leads to PM,i = F(pMI,i, Pe,i).
Similarly, PM,i = F(pMC,i, Pe,i) under cooperative attack.

Let zi(t) denote the correctness of the local spectrum
sensing results of SUi at the tth time slot, and

zi(t) =

{
1 SUi reports a correct sensing result
0 otherwise .

Clearly, P (zi(t) = 1) = pi and P (zi(t) = 0) = 1 − pi.
Thus zi(t) follows the Bernoulli distribution. According to
Definition 1, we have

ri =

∑t0+Tw−1
t=t0

zi(t)

Tw
(21)

where t0 is the start time of the recording time window. Since
zi(t) follows the Bernoulli distribution, it is shown in [35] that
if Tw satisfies

Twpi ≥ 10 and Tw(1− pi) ≥ 10 (22)

then ri follows the normal distribution N(pi, pi(1− pi)/Tw).
This property can be utilized to derive the reputation threshold.

Firstly, we need to find Tw satisfying (22). In this process,
since the FC has no prior information of which SUs are
malicious, it is reasonable for it to assume that all SUs are
honest, which implies pi = PH,i. Based on (22), we can
determine Tw as follows:

Tw =min{Tw : TwPH,i ≥ 10 and Tw(1− PH,i) ≥ 10

for all SUi ∈ N}.
(23)

Obviously, such Tw ensures ri ∼ N(PH,i, PH,i(1 −
PH,i)/Tw).

Secondly, we derive the reputation threshold ηi for each
SUi, which will be discussed under two scenarios: SUi is
honest and SUi is malicious. Let erfc(x) denote the comple-
mentary error function defined as [35]

erfc(x) =
2√
π

∫ +∞

x

exp
(
−t2

)
dt. (24)

Then, under the first scenario, we have the following Propo-
sition 1.
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Proposition 1: When SUi is honest, if ηi satisfies

1

2
· erfc

( √
Tw(ηi − PH,i)√

2PH,i(1− PH,i)

)
≥ 1− ε (25)

then the probability that SUi is considered as an MSU is
smaller than a predefined error rate ε.

Proof: See Appendix A.

Proposition 1 means that one can use a reputation threshold
ηi satisfying (25) to detect an HSU and the detection error
rate is ε, which is predefined. It is interesting to know that
if this ηi is used to detect an MSU, what is the detection
error probability? The following Proposition 2 answers this
question.

Proposition 2: If ηi obtained from (25) is applied to an
MSU, denoted by SUi, the probability that SUi is considered
as an HSU is

Pmd =
1

2
· erfc

( √
Tw(ηi − PM,i)√

2PM,i(1− PM,i)

)
. (26)

Proof: See Appendix B.

Clearly, the reputation threshold ηi should be properly
selected to make Pmd in (26) as small as possible. It can be
seen from (24) that the complementary error function erfc(x)
is monotonic decreasing as x increases. In conjunction with
(26), it is obvious that the larger ηi, the smaller Pmd. Thus,
based on Proposition 1 and Proposition 2, a proper value of
ηi should be

ηi = max

{
η∗i :

1

2
· erfc

( √
Tw(η∗i − PH,i)√
2PH,i(1− PH,i)

)
≥ 1− ε

}
.

(27)
As mentioned above, erfc(x) is monotonic decreasing as x
increases. Therefore, ηi should be the solution of the following
equation:

1

2
· erfc

( √
Tw(ηi − PH,i)√

2PH,i(1− PH,i)

)
= 1− ε. (28)

V. THE R2-CSS METHOD

In this section, we present the R2-CSS method. As is
shown in Fig. 2, it consists of three processes: initialization,
reputation threshold selection, and CSS.

A. Initialization

When the whole network begins to work, the FC knows the
PU and the whole set of participating SUs, i.e., N , in terms
of their transmit powers (ρPU and ρis) and their distances
to the FC (dP and dis). It also knows PB , the probability
that the PU is transmitting on the authorized spectrum, and
PI = 1 − PB . Moreover, the FC can determine the path
loss constant κ, the path loss exponent µ, the time bandwidth
product w, the energy detection threshold λ and the Gaussian
noise variance σ2. Based on these initial parameters, some
intermediate parameters can be obtained as follows:
• Compute Pd, Pf , γ̄FC , and hPU,FC by (1), (2), (3) and

(4), respectively.

• Compute Pe,i, γ̄i, and hi by (6), (7) and (8), respectively.
• Determine pH and PH,i by (5) and (9), respectively.
Furthermore, the FC should initialize the error rate ε and

the set of HSUs chosen to perform CSS, i.e., Nch. Here, Nch
is initialized as Nch = N because the FC does not know any
reputation information about the SUs at this stage. When the
reputation values of SUs are available, the FC would choose
nch HSUs with the highest reputation values to construct
Nch. The value of nch is determined by the FC according
to practical situations.

B. Selecting Reputation Thresholds

In this process, the FC determines the reputation threshold
for each SUi. As shown in Section IV, this process involves
two tasks:
• Determine the recording time window Tw according to

(23).
• Use (28) to select the reputation threshold ηi for each
SUi.

While the first task is easy, the second task is not straight-
forward. Now, we explain the procedure in detail. From
Proposition 1, it implies that solving (28) is equivalent to
finding the reputation threshold ηi ensuring Pr(ri < ηi) = ε,
where the reputation value ri follows the normal distribution.
Since the standard normal distribution of ri is

ri − PH,i√
PH,i(1− PH,i)/Tw

∼ N(0, 1) (29)

then solving (28) is also equivalent to finding the reputation
threshold ηi ensuring

Pr

(
ri − PH,i√

PH,i(1− PH,i)/Tw
<

ηi − PH,i√
PH,i(1− PH,i)/Tw

)
= ε.

(30)
Consequently, given ε, we can use the standard normal dis-
tribution chart to find the value of ηi−PH,i√

PH,i(1−PH,i)/Tw
such

that (30) holds, from which the value of ηi can be deter-
mined. For example, assume PH,i = 0.7984, Tw = 50 and
ε = 0.025. Then, (30) becomes Pr

(
ri−0.7984

0.057 < ηi−0.7984
0.057

)
=

0.025. According to the standard normal distribution chart,
if ε = 0.025, the value of ηi−0.7984

0.057 should be −2, i.e.,
Pr
(
ri−0.7984

0.057 < −2
)

= 0.025. Thus, from ηi−0.7984
0.057 = −2,

it follows ηi = 0.7984− 2× 0.057 = 0.6844.

C. CSS

When the network begins to work, no reputation values of
the SUs are available. So, in the first round of CSS, all SUs are
chosen to perform CSS, i.e., Nch = N as in Initialization. In
this case, the FC collects the local spectrum sensing decisions
from all SUs and then make a final spectrum sensing decision
using the majority rule.

Starting from the second round of CSS, after collecting
the local spectrum sensing decisions from all SUs, the FC
exploits the local spectrum sensing decision history of each
SUi to compute its reputation value ri by (20). If ri > ηi,
SUi is considered as an HSU. Otherwise, SUi is labeled as
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Process 1: Initialization
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Process 3: Cooperative Spectrum Sensing

Fig. 2. The block diagram of R2-CSS.

an MSU and will be removed from the network for next Tw
time slots, followed by updating the SU set N . Among the
SUs in the updated set N , the FC chooses nch of them at
random to form the subset Nch to perform CSS for next Tw
time slots. This operation can prohibit the same collection of
SUs from performing CSS all the time. Then, the FC makes a
final spectrum sensing decision using the following weighted
majority rule :

S =
∑

SUi∈Nch

ri · (0.5− ldi). (31)

Here, ldi denotes the local spectrum sensing decision of SUi,
which is either 0 or 1, as mentioned in Section III-A. If S < 0,
the final spectrum sensing decision is 1; otherwise, the final
spectrum sensing decision is 0. Note that after filtering out
the SUs whose reputation values are lower than the related
thresholds, the accuracy of the fusion results can be always
achieved via the weighted majority rule when tuning nch
carefully.

When the number of MSUs is large and thus the FC cannot
always make correct spectrum sensing decisions, more HSUs
would be judged as malicious ones because their reputation
values computed by the FC would be decreased dramatically.
Since HSUs form the majority of all the SUs, the total number
of SUs judged as malicious ones could be very large. To
alleviate the problem caused by a large number of MSUs,
a parameter, denoted by δ is set. When the number of SUs
judged as MSUs exceeds δ, the whole network should be
suspended and a deeper check on each SU should be done
by the owner of the network.

VI. PERFORMANCE ANALYSIS

In this section, we first analyze Scenario 1 where the number
of MSUs and their Pmal values keep unchanged all the time,
and derive the value of parameter δ. Then, we analyze Scenario
2 where HSUs can change to be malicious and explain how
our method defend against attacks in this case.

A. Analysis for Scenario 1
As stated in Section V, all the SUs participate in CSS during

the first Tw time slots after the whole network is set up since

there is no prior reputation information about the SUs. After
that, the SUs with lower reputation values than the related
thresholds are filtered out as MSUs and nch SUs are randomly
chosen from the remaining to perform CSS for next Tw time
slots. Since the number of MSUs and their Pmal values keep
unchanged all the time in this scenario, the only chance for
MSUs to disrupt the whole network is to launch independent
or cooperative attacks during the first Tw time slots so that
the FC would always make wrong spectrum sensing decisions
and filter out more HSUs as malicious ones.

Due to the fact that all the SUs participate in CSS and
the FC derives final decisions by the majority rule during the
first Tw time slots, the collection of MSUs, M, can greatly
influence the probability that the FC makes correct decisions.
Let PA denote such a probability. It can be computed as in
(32):

PA(M)

=

N∑
i=bN/2c+1

(

M∑
j=0

∑
Mc∈M
|Mc|=j

∏
k∈Mc

PM,k

∏
u∈M/Mc

(1− PM,u))

· (
N−M∑
v=i−j

∑
Nc∈N/M
|Nc|=v

∏
x∈Nc

PH,x
∏

y∈N/(M∪Nc)

(1− PH,y))

(32)

where PH,x and PH,y are computed via (9). If under indepen-
dent attack, PM,k = F(pMI,k, Pe,k) where pMI,k is computed
by (15). If under cooperative attack, PM,k = F(pMC,k, Pe,k)
where pMC,k is computed by (17). In both cases, Pe,k is
computed by (6).

When the probability that the FC makes correct spectrum
sensing results is 0.5 under independent or cooperative attack,
the ability of the FC to differentiate MSUs from HSUs is no
better than guessing by flipping a coin. So, the whole network
is considered as disrupted when such a probability (PIA or
PCA) reaches 0.5. Let LDBIA and LDBCA be the lower
bound of the number of MSUs to disrupt the whole network.
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Fig. 3. PA versus |M| (N = 100, PB = 0.6, PI = 0.4, Pd = 0.9,
Pf = 0.1, ρi = 10 mW, σ2 = −90dBm, µ = 3 and κ = 1).

On the basis of (32), LDBIA and LDBCA can be computed
as follow:

LDBIA = min{|M| : PA(M, PM,k = F(pMI,k, Pe,k)) ≥ 0.5}
(33)

and

LDBCA = min{|M| : PA(M, PM,k = F(pMC,k, Pe,k)) ≥ 0.5}
(34)

In practice, the FC has no idea about which SUs are
honest or which are malicious. The FC can estimate LDBIA
and LDBCA with the assumption that all the SUs are at
the same place from which the distance to the FC is half
of that from the FC to the farthest SU. Then, LDBIA
and LDBCA can be estimated via numerical methods to
satisfy (33) and (34) respectively. After that, the FC can
set δ = min{LDBIA, LDBCA}. Once the number of SUs
judged as malicious ones exceeds δ, the whole network can
be considered as disrupted and should be suspended to have
a thorough check. For instance, Fig. 3 shows PA versus
|M| under both independent and cooperative attacks, where
N = 100, PB = 0.6, PI = 0.4, Pd = 0.9, Pf = 0.1, ρi = 10
mW, σ2 = −90dBm, µ = 3 and κ = 1. According to Fig. 3,
it is easy to obtain LDBIA = 50 and LDBCA = 45 via (33)
and (34) respectively. Thus, δ = min{50, 45} = 45.

B. Analysis for Scenario 2

In this scenario, the number of MSUs and their Pmal values
can change over time. This may occur when some HSUs are
compromised by attackers and then act as malicious ones.
As stated in Section V, after filtering out the SUs whose
reputation values are lower than their related thresholds, nch
of the remaining SUs are chosen randomly to perform CSS
for next Tw time slots via a weighted majority rule. If just
a small proportion of HSUs become malicious suddenly, the
probability that these SUs are chosen for CSS is small. Thus,
the FC can always make correct spectrum sensing decisions

and at the end of current round, the reputation values of these
SUs can be very low and thus would be filtered out. In this
scenario, attackers can disrupt the network by compromising at
least half of the entire SUs. If so, no security countermeasures
can deal with this problem. When the number of the compro-
mised HSUs is not large but the probability that the FC makes
correct decisions is influenced greatly by such behavior, many
HSUs can be judged as MSUs and thus the total number of
SUs judged as malicious ones would increase rapidly. Once
this number exceeds δ, the network would be suspended to
have a thorough check by the owner of the network. In this
way, the harmful influence in this scenario can be alleviated.

VII. SIMULATION RESULTS

In this section, simulation examples are provided to illus-
trate the performance of the proposed R2-CSS method, in
comparison with the reputation-based CSS methods in [4]
and [8]. In our simulations, we consider a network scenario
similar to [13], where 100 SUs (i.e., N = 100) are randomly
distributed in an area of 5km × 5km, the FC is located at
the center of this area, and the distance between the FC
and the PU is 20km. Besides, we set the PU transmit power
ρPU = 100mW, the SU transmit power ρi = 10 mW, ∀i ∈ N ,
the noise variance σ2 = −90 dBm, the pair of path loss µ = 3
and κ = 1, the energy detection threshold λ = 0.01. We also
set Pmal = 1, i.e., in the case of independent attack, each
MSU would report the sensing decision opposite to its own
local sensing result.

Three performance metrics, QE , QD and QF , are used to
evaluate the effectiveness of the proposed method, which are
the probability that the FC makes a wrong final spectrum
sensing decision, the probability that an MSU is detected
correctly, and the probability that an HSU is misidentified
as an MSU, respectively. These performance metrics can be
calculated as follows:

QE =
Number of incorrect decisions

Twin
(35)

QD =
Number of MSUs detected

Total number of MSUs
(36)

QF =
Number of HSUs misidentified

Total number of HSUs
. (37)

Clearly, the smaller QE and QF and larger QD, the better.

A. Impact of nch on CSS performance

In the proposed R2-CSS method, nch SUs are randomly
chosen by the FC to perform CSS after filtering out the SUs
whose reputation values are lower than their related thresholds.
In this simulation, we evaluate the influence of nch on CSS
performance by varying the values of nch from 5 to 30,
in the presence of different number of MSUs (M = 10,
20, 30 and 40, respectively). The MSUs could launch both
independent and cooperative attacks. Figs. 4 and 5 show
the CSS performance metrics QE , QD and QF versus nch
under independent and cooperative attacks, respectively. It
can be seen that in general, the larger nch, the better CSS
performance (i.e. the smaller QE and QF , and the larger QD).
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The advantage of using more SUs (i.e., larger nch) for CSS
is more evident with the increase of attacks (i.e., with the
increase of M ). This is expected because when more SUs are
employed in CSS, the R2-CSS method can be more robust
against attacks due to the weighted majority rule used to derive
final spectrum sensing decisions. When nch exceeds 20, the
performance improvement with respect to QE , QD and QF
as nch increases is not as obvious as that when nch < 20. On
the other hand, the R2-CSS method resists both independent
and cooperative attacks very well in the cases of M = 10
and 20. While further increasing M will deteriorate the CSS
performance, the negative impact of cooperative attack on CSS
is more severe than that caused by independent attack. In the
following simulations, nch is set to 20.

B. The Effect of Different Pmal
One may wonder whether there exist some strategies for

MSUs by tuning Pmal carefully to avoid being detected by
the FC. In this subsection, we evaluate the influence of Pmal
on CSS performance by varying the values of Pmal from 0.2
to 1.0 with a step size of 0.2, under both independent and
cooperative attacks. Here, we set ε = 0.025 to derive the
reputation value thresholds.

Figs. 6 and 7 show the CSS performance metrics QE , QD
and QF versus M , where M the number of MSUs, under these
two kinds of attacks with different Pmal values. Generally,
one can see that the larger Pmal, the larger QE (i.e., worse
CSS performance). This is understandable as Pmal can reflect
the frequency of MSUs launching attacks and thus the CSS
performance would be obviously degraded when MSUs launch
attacks persistently. In addition, from Fig. 6b and Fig. 7b,
the smaller Pmal, the smaller QD (i.e., more MSUs escape
from detection). This is because MSUs act more similarly to
HSUs when Pmal decreases. However, when Pmal is not 1.0,
R2-CSS can always keep QE (Fig. 6a & Fig. 7a) and QF
(Fig. 6c & Fig. 7c) in a low level under both independent
and cooperative attacks. This indicates that when Pmal is not
1.0, the proposed method can guarantee the FC to always
make correct spectrum sensing decisions and constrain the
number of HSUs to be filtered out under an accepted rate.
The only chance to disrupt the whole network is to set
Pmal to 1.0 and make as many MSUs as possible to launch
independent or cooperative attacks, i.e. in this case, dramatical
CSS performance degration can be caused when the number of
MSUs reaches 45 and 35 under independent and cooperative
attacks respectively.

Note that when some MSUs perform independent attacks
and the other MSUs perform cooperative attacks, Figs. 6 and
7 present the lower and upper bounds of the influence of Pmal
values referring to the three CSS performance metrics. In the
following two subsections, we set Pmal = 1 and compare the
effectiveness of R2-CSS with the methods proposed in [4] and
[8] under independent and cooperative attacks separately.

C. Performance Comparison under Independent Attacks

In this subsection, the performance of the R2-CSS method,
in terms of QE , QD and QF , is compared with those of

the methods in [4] and [8], under independent attacks. In
the simulation, we set ε = 0.025. Besides, both perfect and
imperfect CCCs are considered.

Fig. 8 shows QE , QD and QF versus M under independent
attacks, where the CCC is imperfect. One can see that the R2-
CSS method and the method in [4] significantly outperform
the method in [8] according to the metrics QE and QF , so
long as the number of MSUs is not too large. With respect to
the metric QD, the R2-CSS method and the method in [8] have
similar performance, and both of them outperform the method
in [4] by large margins. Importantly, the R2-CSS method
performs the best in all situations. These simulation results
are not surprising. As we previously mentioned, the methods
in [4] and [8] require perfect CCC but this assumption does not
hold in this case, which leads to performance degradation. Fur-
thermore, the method in [8] requires that the fraction of MSUs
over all SUs is known to the FC. While this condition is not
satisfied, many HSUs will be incorrectly classified as MSUs
(see Fig. 3(c)). This will reduce the number of HSUs used
to perform CSS, resulting in poor CSS performance (see Fig.
3(a)). Also, this will cause those HSUs incorrectly classified
as MSUs being removed from the network. On the other hand,
while performing MSU detection, the method in [4] fixes the
reputation value threshold to 0.5, which is not appropriate as
the reputation value obtained in [4] can accumulate over time.
As a result, a portion of MSUs cannot be detected (see Fig.
3(b)). This implies that some of these MSUs might be used for
CSS, which decreases the CSS performance (see Fig. 3(a)). In
contrast, the R2-CSS method does not have these problems.
Consequently, its overall performance is much better than that
of [4] and [8].

Fig. 9 shows the simulation results for the case that the CCC
is perfect. Although the performance margins between the R2-
CSS method and the methods in [4] and [8] are narrowed,
the overall performance of the R2-CSS method is still much
superior to that of the other two methods.

D. Performance Comparison under Cooperative Attacks

In this simulation, we evaluate the three methods under
cooperative attacks, where ε = 0.025. Fig. 10 shows their per-
formance in the case of imperfect CCC. By comparing Fig. 10
with Fig. 8, it is obvious that the performance of all methods
degrades under cooperative attacks. This is understandable as
cooperative attacks are generally more severe than independent
attacks. Nevertheless, one can see from Fig. 10 that when M
is about 40 or smaller, the R2-CSS method performs very well
according to all three performance metrics QE , QD and QF ,
and significantly outperforms the methods in [4] and [8]. When
M exceeds 40, all three methods fail to achieve satisfactory
performance.

Fig. 11 shows the performance of the three methods in the
case of perfect CCC. We can see that in terms of QE and
QF , while the methods in [4] and [8] fail at M = 33 or
smaller, the R2-CSS method fails when M reaches the much
greater value of 45. Regarding QD, the methods in [4] and
[8] start to break down at M smaller than 35, but the R2-
CSS method performs perfectly for all M values considered.
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Fig. 4. QE , QD and QF versus nch under independent attacks, where four different M values are considered and N = 100.

5 10 15 20 25 30
nch

0.00

0.05

0.10

0.15

0.20

Q
E

M=10

M=20

M=30

M=40

(a)

5 10 15 20 25 30
nch

0.90

0.92

0.94

0.96

0.98

1.00

Q
D

M=10

M=20

M=30

M=40

(b)

5 10 15 20 25 30
nch

0.0

0.1

0.2

0.3

0.4

0.5

Q
F

M=10

M=20

M=30

M=40

(c)

Fig. 5. QE , QD and QF versus nch under cooperative attacks, where four different M values are considered and N = 100.
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Fig. 6. QE , QD and QF versus M under independent attacks, where Pmal is from 0.2 to 1.0.
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Fig. 7. QE , QD and QF versus M under cooperative attacks, where Pmal is from 0.2 to 1.0.
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Fig. 8. QE , QD and QF versus M under independent attacks, where the CCC is imperfect.
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Fig. 9. QE , QD and QF versus M under independent attacks, where the CCC is perfect.

Besides, it is interesting to see from Fig. 11 that when the
CCC is perfect, the influence of cooperative attacks on the
three methods appears in a sharper manner, in terms of QE
and QF . The reason is that under a perfect CCC, the effect
of cooperative attacks will be reflected more accurately due
to the lossless exchange of control messages between the FC
and the SUs.

E. Performance Comparison under Mixed Attacks

After verifying the effectiveness of the R2-CSS method
under both independent and cooperative attacks, one may
wonder whether it is still effective under mixed attacks where
some MSUs perform independent attacks and the remaining
MSUs perform cooperative attacks. Let ζ denote the ratio of
the number of MSUs performing cooperative attacks over the
total number of MSUs. In this subsection, the performance of



0018-9545 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVT.2017.2763980, IEEE
Transactions on Vehicular Technology

12

10 15 20 25 30 35 40 45
M

0.0

0.2

0.4

0.6

0.8

1.0

Q
E

Method in [4]
Method in [8]
R 2-CSS

(a)

10 15 20 25 30 35 40 45
M

0.0

0.2

0.4

0.6

0.8

1.0

Q
D

Method in [4]
Method in [8]
R 2-CSS

(b)

10 15 20 25 30 35 40 45
M

0.0

0.2

0.4

0.6

0.8

1.0

Q
F

ε=0ǫ 025

Method in [4]
Method in [8]
R 2-CSS

(c)

Fig. 10. QE , QD and QF versus M under cooperative attacks, where the CCC is imperfect.
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Fig. 11. QE , QD and QF versus M under cooperative attacks, where the CCC is perfect.

the proposed method is compared with that of the methods in
[4] and [8] by varying ζ from 0.2 to 0.8 with a step size of 0.2.
Since the influence of mixed attacks is not evident when the
total number of MSUs is too small and all the methods may
fail when this number is too large, we set the total number of
MSUs M = 30. Besides, ε = 0.025.

Fig. 12 shows QE , QD and QF versus ζ. It is obvious that
the R2-CSS method and the method in [4] outperform the
method in [8] with respect to the metrics QE and QF with
the R2-CSS method performing the best (see Figs. 12a and
12c). In terms of the metric QD, the R2-CSS method also
outperforms the other two methods (see Fig. 12b). This is
similar to the case under independent or cooperative attacks.
We can also see that the effectiveness of the method in [8]
degrades as ζ increases while that of the R2-CSS method
or the method in [4] keeps stable. This is because when the
total number of MSUs is constant, the influence of MSUs
becomes greater as ζ increases and the worst case is when
under cooperative attacks. By a further checking, QEs, QDs
and QF s of these three methods fall in the ranges determined
under independent and cooperative attacks respectively. Since
the performance of the R2-CSS method or the method in [4] is
very similar under both independent and cooperative attacks,
it is not surprising to find that the effectiveness of these two

methods keeps stable when ζ varies.
In summary, the R2-CSS method has the best performance

in all situations. In other words, no matter under independent,
cooperative, or mixed attacks, the R2-CSS method can be
always superior to that of the other two methods.

VIII. CONCLUSION

In this paper, we first analyzed the impact of imperfect
CCC on the identification of MSUs. Our analysis showed that
under an imperfect CCC, more HSUs could be mistakenly
identified as MSUs, causing the FC to make incorrect final
spectrum sensing decisions. To solve this problem, we derived
a novel reputation value threshold for each SU, which can help
better differentiate HSUs and MSUs. Built upon the derived
reputation threshold, we developed a new reputation-based
CSS method, called R2-CSS method, in which the SUs with
higher reputation values are chosen to perform CSS. The R2-
CSS method is robust against independent and cooperative
attacks under both imperfect and perfect CCCs. Extensive
simulations were carried out to compare the performance of
the proposed method and the reputation-based CSS methods
in [4] and [8]. Simulation results demonstrated the superior
performance of our method.
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Fig. 12. QE , QD and QF versus ζ, where M = 30 and ε = 0.025.

APPENDIX A
PROOF OF PROPOSITION 1

Proof: Given that the FC always makes correct decisions
[4] and

ri ∼ N(PH,i, PH,i(1− PH,i)/Tw) (38)

the probability density function of ri, denoted by fH,i(x), can
be expressed as

fH,i(x) =

√
Tw√

2πPH,i(1− PH,i)
· exp

(
− Tw(x− PH,i)2

2PH,i(1− PH,i)

)
.

(39)
Thus, we have∫ ηi

−∞
fH,i(x)dx

=

∫ ηi

−∞

√
Tw√

2πPH,i(1− PH,i)
· exp

(
− Tw(x− PH,i)2

2PH,i(1− PH,i)

)
dx

= 1−
∫ +∞

ηi

√
Tw√

2πPH,i(1− PH,i)
· exp

(
− Tw(x− PH,i)2

2PH,i(1− PH,i)

)
dx

= 1− 1√
π

∫ +∞
√
Tw(ηi−PH,i)√

2PH,i(1−PH,i)

exp
(
−y2

)
dy

= 1− 1

2
· erfc

( √
Tw(ηi − PH,i)√

2PH,i(1− PH,i)

)
.

(40)

From (25) and (40), it is easy to see that
∫ ηi
−∞ fH,i(x)dx ≤ ε,

i.e., the probability of ri < ηi is at most ε. This ensures that
the probability that SUi is considered as an MSU is smaller
than ε. This completes the proof.

APPENDIX B
PROOF OF PROPOSITION

Proof: Recall that when SUi is malicious, we have
pi = PM,i, where PM,i = F(pMI,i, Pe,i) under independent
attack and PM,i = F(pMC,i, Pe,i) under cooperative attack.
According to (23), Tw is derived assuming that all the SUs are
honest. However, when the range the network is large enough
and SUs are distributed randomly in this area, TwPM,i ≥ 10
and Tw(1 − PM,i) ≥ 10 can be considered as right since

all the SUs are considered to derive Tw in (23). Thus,
ri ∼ N(PM,i, PM,i(1 − PM,i)/Tw). The probability density
function of ri, denoted by fM,i(x), is

fM,i(x) =

√
Tw√

2πPM,i(1− PM,i)
·exp

(
− Tw(x− PM,i)

2

2PM,i(1− PM,i)

)
.

(41)
If SUi is considered to be honest, this means that ri > ηi. So,
Pmd can be computed by

Pmd =

∫ +∞

ηi

fM,i(x)dx. (42)

Similar to the proof of Proposition 1 and on the basis of (24),
(41) and (42), one can obtain (26). This completes the proof.
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